Environment-de, Industry-4-0-de, Innovation-de 15 Dezember 2022

Recycling von Mehrschicht- und Verbundkunststoffen

Recycling von Mehrschichtkunststoffen
Post teilen

Kunststoffe sind als bequeme, vielseitige und leichte Konsumgüter von großem Wert und bieten in hochwertigen Anwendungen, wie z. B. in Automobilen, eine hervorragende Leistung. Trotz ihres Nutzens ist jedoch klar, dass der lineare Verbrauch von Kunststoffen für den einmaligen Gebrauch nicht mit dem Übergang Europas zu einer Kreislaufwirtschaft vereinbar ist. Dieses Modell stellt die Wiederverwendung und das Recycling von Ressourcen in den Vordergrund, mit dem Ziel, Abfälle zu reduzieren und so viel Wert wie möglich zu erhalten.

Bei der Wiederverwertung von Kunststoffen wurden einige Fortschritte erzielt. So wurden 2018 beispielsweise 41,5 % der anfallenden Kunststoffverpackungsabfälle recycelt. Dies reicht jedoch noch nicht aus, um eine vollständige Kreislaufwirtschaft zu erreichen, insbesondere beim Recycling von mehrschichtigen Kunststoffen, die schwer zu trennen sind. Außerdem ist es wichtig, dass die Recyclingtechnologien mit den neuen Materialien, die auf den Markt kommen, Schritt halten.

Fortschrittliches Kunststoffrecycling

Das von der EU finanzierte Projekt MultiCycle zielt auf die Entwicklung einer Pilotanlage für das industrielle Recycling und die Behandlung von mehrschichtigen Kunststoffen ab. Diese Anlage konzentriert sich auf zwei wichtige Industriesegmente, die für Recycler eine Herausforderung darstellen: mehrschichtige Verpackungen/flexible Folien und faserverstärkte thermoplastische Verbundwerkstoffe, wie sie im Automobilsektor verwendet werden.

Auswahl der Technologie

NIR und HSI-NIR sind die Techniken, die üblicherweise für die Behältersortierung verwendet werden. Ersteres eignet sich für einzelne Verpackungsstücke vor der Zerkleinerung und kann auch eine erste Bewertung der Eignung liefern, bevor man zum zweiten Verfahren übergeht, das eine Art der Bildgebung bietet. Im Rahmen des MultiCycle-Projekts wurden die Verpackungsmaterialien in Form von bis zu 5 cm großen Flocken auf ein Förderband aufgegeben, und daher war HSI die Zieltechnik für die endgültige Implementierung in den Prototyp des Eingangskontrollsystems. Für die Überwachung der gelösten und zurückgewonnenen Kunststoffe während und nach dem CreaSolv®-Prozess wurde jedoch die punktuelle NIR-Spektroskopie eingesetzt, für die keine Bildgebungsfunktion erforderlich ist. Ergänzende Techniken wie LIBS und FTIR wurden ebenfalls vorläufig getestet, um andere Fraktionen wie AlOx zu erkennen oder um die Erkennung von schwarzen Behältern zu ermöglichen, was die Genauigkeit der Überwachung verbessern könnte, wenn ein vollständiges System implementiert wird.

Nah-Infrarot-Spektroskopie (NIRS)

Die NIR-Spektroskopie ist eine schwingungsspektroskopische Technik. In diesem Bereich setzen sich die Absorptionsspektren aus Obertönen und Kombinationsbanden in Bezug auf die Grundmoden der Moleküle im mittleren Infrarotbereich zusammen. NIR-Strahlung hat einen Wellenlängenbereich von 900 bis 2500 nm. Die Absorptionsbanden in diesem Bereich sind aufgrund des hohen Grades an Bandenüberlappung breit. Darüber hinaus ist die Signalintensität aufgrund der Selektionsregeln der Phänomene zehn- bis tausendmal schwächer als die Signale im mittleren Infrarotbereich. Dieser Mangel an Intensität und die starke Bandenüberlappung wird jedoch durch die hohe Spezifität kompensiert. Die Spezifität der NIR-Spektroskopie beruht auf der Tatsache, dass NH-, OH- und CH-Bindungen die Strahlung bei diesen Wellenlängen stark absorbieren, was sie zu einem optimalen Instrument für die Untersuchung organischer Verbindungen und Polymere macht. Durch den Einsatz multivariater Methoden für die Analyse von Spektraldaten konnte das volle Potenzial der Technik für die Identifizierung, Unterscheidung, Klassifizierung und Quantifizierung ausgeschöpft werden.

Hyperspektrales Bildgebungssystem im kurzwelligen Infrarotbereich (HSI-SWIR)

Aktuelle Technologien für die Überwachung und Klassifizierung von festen Kunststoffabfällen im nahen Infrarotbereich haben Hyperspektralkameras in ihre Konfiguration aufgenommen. Sie ermöglichen es, anstelle eines einzelnen Spektrums ein hyperspektrales Bild (HSI) der Probe (hyperspektraler Würfel) aufzunehmen, das nicht nur die räumliche Lage der Probe, sondern auch ihre chemische Zusammensetzung und Verteilung enthält. In diesem Zusammenhang gibt es mehrere Veröffentlichungen und technologische Entwicklungen, die HSI-SWIR für die Klassifizierung und Identifizierung von Kunststoffen nutzen.

Ein grundlegendes hyperspektrales Bildgebungssystem, das in Abb. 3 dargestellt ist, umfasst in seiner Konfiguration einen empfindlichen Sensor (CCD-Kamera), eine breitbandige Beleuchtungsquelle, ein Spektrometer, das das rückgestreute/transmittierte Licht in seine verschiedenen Wellenlängen aufteilt, und bei Bedarf ein Förderband für die Probenahme. In diesem Fall ist zu beachten, dass das Förderband mit der Aufnahmegeschwindigkeit des CCD-Sensors synchronisiert werden muss, um eine korrekte Bildaufnahme zu ermöglichen. Ein Hyperspektralsystem liefert als Ausgabe einen Hyperwürfel. Ein Hyperwürfel ist ein Satz von Daten, die in drei Dimensionen angeordnet sind, zwei räumliche (eine XY-Ebene) und eine spektrale (𝜆, Wellenlänge), wie unten dargestellt.

Messparameter:

Die wichtigsten Parameter für hyperspektrale Würfelaufnahmen lassen sich wie folgt zusammenfassen:

  • Bildrate der Kamera (fps)
  • Geschwindigkeit des Transporters (m/s)
  • Kamera-Transporter-Abstand (cm) und Aufnahmezeit (µs). Diese Parameter sind miteinander verknüpft und müssen optimiert werden, um eine gute Qualität der aufgenommenen Spektren zu erhalten.

Die Hyperspektralbilder wurden mit einer SWIR-Kamera aufgenommen, die im Bereich ∼900-1700 nm arbeitet, mit einer Bildrate von 214 fps, einer Integrationszeit von 350𝜇s und einer Transportergeschwindigkeit von 25m/min.

Recycling von Mehrschichtkunststoffen

Abbildung 1: (Links) Mustersatz Nr. 1. Enthält flexible Kunststofffolien aus PE, PP, PA und PET. Es wurden Einzel- und Doppelkombinationen dieser Polymere (d. h. Polymer A/Polymer B) einbezogen. (Rechts) Klassifizierungsbild, erstellt mit einem PLSDA-Modell.

Schlussfolgerungen zum Projekt

Das HSI-Überwachungssystem konnte eine gute Annäherung an den prozentualen Anteil des Polymergehalts in einer mehrschichtigen Polymerprobe liefern. Im schlimmsten Fall wird das in der Probe am häufigsten vorkommende Polymer vorhergesagt, so dass bei großen Chargen die endgültigen Prozentsätze ziemlich genau sein dürften. Für die Überwachung des Auflösungsprozesses wurden nur 1 Polymer und 1 Lösungsmittel für die Tests in IRIS bereitgestellt. Die mit Visum Palm™ erzielten Ergebnisse entsprachen den Erwartungen, aber es wurden keine Prozessmodelle im Zeitverlauf getestet. Die Auflösungskontrolle wurde aufgrund von Problemen mit dem im LOEMI installierten Viskosimeter nicht durchgeführt. Aus diesem Grund gibt es in diesem Abschnitt keine weiteren Ergebnisse.

Für die Überwachung der Automobilproben wurde die LIBS-Technik gewählt. Die Optimierung von LIBS war kompliziert, da es zum ersten Mal eingesetzt wurde. Es wurden Modelle durchgeführt, indem verschiedene Parameter geändert wurden, um die besten Bedingungen zu finden. Das PATbox-Tool für LIBS ermöglichte keine Datenerfassung mit der gleichen Geschwindigkeit wie die LIBS-Software, so dass die Modelle geändert werden mussten. Schließlich wurden die Modelle kalibriert und getestet, um die Art der Fasern in den schwarzen Kunststoffen PP und PA vorherzusagen. Die in den drei Chargen erzielten Ergebnisse waren zufriedenstellend, da die Vorhersagen der Modelle (Chemometrie und maschinelles Lernen) nahe an den tatsächlichen Gehalten lagen. Es wurden einige Tests durchgeführt, um zwischen PP und PA zu unterscheiden, aber die Klassifizierungsrate lag bei etwa 80 % der guten Vorhersagen. Im Allgemeinen waren Fehlmarkierungen und Verschmutzungen der Proben nicht schwerwiegend.

Von IRIS Technology Solutions
Environment-de, Innovation-de 3 August 2022

Circular Economy: Bioplastics vs. black plastics

Post teilen

Circular Economy: Bioplastics vs. black plastics

By 2022, a significant share of used plastics – in some countries more than two thirds – will be incinerated or sent to landfill, and only a small share will be recycled (30%). In this context, there is an urgent need to find biodegradable substitute materials for black plastics that cannot be recovered today by traditional optical and sorting techniques, while maintaining their functional properties in industrial applications.

In this context, IRIS Technology presented last July at SIMULTECH 2022, its research „Biodegradation prediction and modelling for decision support“, a mathematical AI model that allows predicting the biodegradation of natural materials of food origin that are candidates to replace carbon compounds currently used in the automotive industry, electronics, plastic bags, among others.

Bioplastics and black plastics

The term bioplastic is a complex one, encompassing materials that come from renewable sources and materials that are biodegradable. While many plastics, under certain natural or man-made conditions, are degradable, not all are recoverable. In particular, black plastics, because of their pigment or colour, escape the traditional infrared systems used in the recycling industry for their separation.

BionTop

The work being carried out by IRIS Technology together with a dozen European entities falls under the umbrella of the European BIOnTop project, which aims to develop a range of bioplastics and complementary coatings and validate their use in food and personal care packaging, determining their environmental impact and the economic viability of an extended substitution project in the industry.

Bioplásticos

Administrations and Companies participating in the project

  • Germany: European Bioplastics EV, Fachhochschule Albstadt-Sigmaringen
  • Belgium: Istrazivanjei Razvoj Centre Scientifique & Technique del’Industrie Textile Belge ASBL, Organic Waste Systems NV, Sioen Industries NV
  • Slovenia: BIO-Mi Drustvo S Ogranicenom Odgovornoscu za Proizvodnju
  • Spain: AIMPLAS, Cristobal Meseguer SA, Emsur Macdonell SA, IRIS Technology Solutions SL, Queserías Entrepinares SA, Ubesol SL
  • Estonia: Wearebio OU
  • Italy: Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Enco SRL, Laboratori Archa SRL, Movimento Consumatori, Planet Bioplastics SRL, Romei SRL
  • Netherlands: Total Corbion PLA BV
  • Czech Republic: Silon SRO
Von IRIS Technology Solutions
Industry-4-0-de, Innovation-de 24 Januar 2022

IRIS Technology develops the first industrial system for the chemical control and inspection of melamine boards

Post teilen

IRIS Technology, a Spanish engineering company that manufactures photonic solutions for online quality control, has developed the first industrial system for real-time quality control of melamine or particle boards with NIR and hyperspectral technology.

 

The wood industry, and consequently the furniture and furnishing industry, is a sector that continues to grow by leaps and bounds worldwide, with a year-on-year increase of 6.5%, still boosted by the increase in consumption during the pandemic. So, not surprisingly, technology is accompanying the industry in this growth by combining production and operations techniques with smart technologies such as photonics, analytics and artificial intelligence brought about by Industry 4.0.

 

The new chemical vision industrial system, manufactured and patented by IRIS Technology, uses NIRS (Near Infrared Spectroscopy) technology and machine learning together with chemometric models to analyse the composition of each melamine board unit produced, non-invasively, It can quantitatively analyse the distribution of the moisture parameter on the impregnation line and classify the curing level of each board in order to detect defects early, correct factory processes and reject or remanufacture boards.

 

Until now, the control of this type of parameters in the melamine production process was only carried out through destructive laboratory methods and visual inspection, implying a high cost for the manufacturer and the difficult -if not impossible- inspection of all the units produced. This new technological application stands as a solution for the inspection of this type of boards, thus reducing defective units, losses, claims and consequently improving the brand image of the manufacturer.

 

For more information please contact IRIS Technology www.iris-eng.com

Contrôle des produits chimiques
Von IRIS Technology Solutions
Industry-4-0-de, Innovation-de 14 Mai 2021

IRIS Technology among the Top 10 Spanish mechanical engineering startups of 2021

Post teilen

The company IRIS Technology, is awarded in the ranking „Top Mechanical Engineering Startups in Spain 2021“, elaborated by the British portal „startupill.com„, in the position Nº6 of the most innovative companies in the mechanical engineering industry and worth following this year.

Startupill.com bases its selection on the performance of companies in categories such as: innovation, innovative ideas, innovative route to market, innovative product, growth, exponential growth, exponential growth strategy, management and social impact. Look the entire publication here.

About IRIS Technology

IRIS (www.iris-eng.com) is an advanced engineering company that manufactures PAT systems for in-line process and quality control in the pharmaceutical, food and chemical industries with its own devices registered under the VISUM Devices trademark. As a manufacturer, it realizes tailor-made solutions and ad-hoc configurations for different processes and analytical or control needs, from the actual engineering development to the specific chemometric modeling. In addition, it actively collaborates in numerous EU innovation projects with international partners and has in its staff physicists, mathematicians, chemometricians, opticians, engineers, software developers and highly specialized profiles from the world of science and technology.

Von IRIS Technology Solutions