Environment, Innovation 3 August 2022
Circular Economy: Bioplastics vs. black plastics
bioplastics
Share post

Circular Economy: Bioplastics vs. black plastics

By 2022, a significant share of used plastics – in some countries more than two thirds – will be incinerated or sent to landfill, and only a small share will be recycled (30%). In this context, there is an urgent need to find biodegradable substitute materials for black plastics that cannot be recovered today by traditional optical and sorting techniques, while maintaining their functional properties in industrial applications.

In this context, IRIS Technology presented last July at SIMULTECH 2022, its research “Biodegradation prediction and modelling for decision support”, a mathematical AI model that allows predicting the biodegradation of natural materials of food origin that are candidates to replace carbon compounds currently used in the automotive industry, electronics, plastic bags, among others.

Bioplastics and black plastics

The term bioplastic is a complex one, encompassing materials that come from renewable sources and materials that are biodegradable. While many plastics, under certain natural or man-made conditions, are degradable, not all are recoverable. In particular, black plastics, because of their pigment or colour, escape the traditional infrared systems used in the recycling industry for their separation.

BionTop

The work being carried out by IRIS Technology together with a dozen European entities falls under the umbrella of the European BIOnTop project, which aims to develop a range of bioplastics and complementary coatings and validate their use in food and personal care packaging, determining their environmental impact and the economic viability of an extended substitution project in the industry.

Administrations and Companies participating in the project

  • Germany: European Bioplastics EV, Fachhochschule Albstadt-Sigmaringen
  • Belgium: Istrazivanjei Razvoj Centre Scientifique & Technique del’Industrie Textile Belge ASBL, Organic Waste Systems NV, Sioen Industries NV
  • Slovenia: BIO-Mi Drustvo S Ogranicenom Odgovornoscu za Proizvodnju
  • Spain: AIMPLAS, Cristobal Meseguer SA, Emsur Macdonell SA, IRIS Technology Solutions SL, Queserías Entrepinares SA, Ubesol SL
  • Estonia: Wearebio OU
  • Italy: Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Enco SRL, Laboratori Archa SRL, Movimento Consumatori, Planet Bioplastics SRL, Romei SRL
  • Netherlands: Total Corbion PLA BV
  • Czech Republic: Silon SRO
By IRIS Technology Solutions
Digitalization, Environment, Industry-4-0 22 June 2022
Identification and characterization of polymers with portable NIR technology
polymers
Share post

The plastic recycling industry presents an enormous complexity for the separation of the different types of polymers and among the most widespread techniques for this purpose are the spectroscopic ones. We will not discuss all of them in this article, as it would imply diving into the world of R&D, new in-line detection technologies and their practical or economic limitations in trying to reach the aspirational standards in terms of recycling and circularity of the European Union.

However, following an eminently practical approach, an agile and effective way to identify different compounds or plastic mixtures for recycling or industrial reuse is through NIR spectroscopy. This technique is based on the interaction of light with matter and makes it possible to observe the different absorbances produced by the vibrations of the bonds between the atoms of the polymers. As a result, a characteristic spectrum of each type of plastic is obtained, which can be quantified and classified by means of a predictive machine learning model.

The Visum Palm™ handheld NIR analyzer.

The Visum Palm™ analyzer, a portable NIR instrument operating in the SWIR range (1-1.7 μm), is particularly suitable for successful quantitative (composition) and qualitative (identification and classification) characterization of a wide variety of materials and mixtures. For this reason, the use of the Visum Palm leads to significant savings in analytical workload and substantial reductions in waiting time.

In addition, its ubiquitous nature -due to its portability- and the possibility of programming it to determine multiple parameters at the same time, allows it to be used in a wide variety of analytical tasks at the production line, in logistics warehouses and even for applied research studies and the development of proprietary models carried out by AIMPLAS, a reference in the plastics sector in Spain.

Main features and generic advantages of SWIR spectroscopy:

  • Determination of multiple parameters with a single instrument.
  • Real-time and continuous analysis for automatic and instantaneous correction of process parameters.
  • Non-destructive determinations without sample preparation.
  • Excellent repeatability.
  • Use does not require skilled operators.

Although there are several portable NIR instruments on the market, it is essential to take into account the spectral range with which the instrument works and the size of the spot (measuring point) to ensure representativeness of the reading with respect to the sample. The Visum Palm™ System introduces a 10mm spot and a powerful spectrophotometer that works in the range 900-1700 nm.

Identification and classification of polymers in the industry

The Visum Palm™ instrument includes a library of models for reading and determination at the line, without sample preparation and in a few seconds that allows characterization of a large number of polymers, including PET (polyethylene terephthalate), HDPE (high density polyethylene), LDPE (low density polyethylene), PP (polypropylene), PS (polystyrene), PVC (vinyl or polyvinyl chloride), PC (polycarbonate), ABS (acrylonitrile butadiene styrene), to name a few, including more complex mixtures.

Identification and separation is important in polymer manufacturing, since in order to reprocess plastic waste, manufacturers must ensure that the plastic materials are as pure and clean as possible and, of course, the price manufacturers pay recyclers for the plastic waste they supply depends on this. In addition, low levels of impurities can already considerably affect the quality and yield of a complete recycling batch. In this context, spectroscopy techniques combined with machine learning models make it possible to introduce important automatisms and quality controls sensitive to the needs of the industry.

By IRIS Technology Solutions

Among the 60 million tonnes of plastic produced in Europe every year, only 30% of the total is recycled and the 79% of plastic waste has ended up in landfills or as litter in the natural environment. This is a fact that will produce an environmental disaster in a not too far future.

The European Commission has put in place some recent measures to help make plastic more sustainable. A plastics strategy adopted in 2018 aims to tackle the problem by transforming how plastic products are designed, used, and recycled. One key target is to recycle 55% of plastic packaging by 2030. Packaging, which is often made up of different types of plastic, making it challenging to recycle, has a high environmental footprint: about 40% of plastic produced is used for packaging, which is typically discarded after use.

As part of the MultiCycle project, Dr. Elodie Bugnicourt, Project Manager, H2020 and Innovation Unit leader at IRIS, and her project partners are aiming to scale up a patented process called CreaSolv developed by the Fraunhofer Institute in Munich, Germany which can give multilayer packaging and fiber-reinforced composites a second life again and again.

With the CreaSolv process, recycled plastic is of high quality and the process is more efficient. It can recover a polymer instead of a monomer which is an advantage because it is not necessary to use energy to polymerize the material again.

After several small scale trials with multilayer packaging and composites, CreaSolv goes a step beyond, the design of a large-scale pilot plant in Bavaria where trials should start in July.

 

‘We want to demonstrate that it’s possible to have a circular economy in the plastic sector.’ Dr Tatiana Garcia Armingol, CIRCE, Zaragoza, Spain

Dr. Tatiana Garcia Armingol, director of the energy and environment group at CIRCE energy research center in Zaragoza, Spain, and her colleagues are demonstrating that conventional recycling can be improved to boost the recovery rate of certain hard to recycle plastics as part of the POLYNSPIRE project with the use of two technologies as adding vitrimers and high energy irradiation to increase the resistance of recycled materials.

We are in front of great proposals to finally transform the plastic sector into a circular economy.

 

Keep following us for being up-to-date about this and more innovative breakthroughs.

Click on the following link to read the whole article written by Sandrine Ceurstemont at ‘HORIZON’, The EU Research and Innovation Magazine.

By Lorena Vázquez