Industry-4-0 26 July 2022
Detection of foreign bodies in the production line
Detection of foreign bodies
Share post

In this post we will address a recurrent and transversal problem in the industry related to food safety: the presence of foreign bodies in the production line and we will see how we can prevent this from happening with viable techniques at industrial level such as imaging spectroscopy or also known as hyperspectral NIR or Hyperspectral Imaging (HSI).

Detection of foreign bodies

What do we mean by foreign bodies?

In general terms, for manufacturers, “foreign body” is anything that should not be in the production line, whether it is an organic element (bone, skin, shells, other foods that are not the product to be packed, pieces of wood, wood chips to mention a few) or inorganic elements such as metals, screws, plastics, cardboard, paper, etc. The rule is that everything that is not product should not be there, as it is a problem that can alter the quality of the final product and therefore generate economic losses, as well as being a risk for the health of consumers and the image of the company.

State of the art

Until now, foreign body control in the vast majority of industries, whether food or non-food, has been carried out by visual inspection. That is to say, with operators on the production line watching the product flow and extracting any foreign bodies that may have crept in during the manufacturing process. On the one hand, X-ray detection systems, which have already been implemented in practically all industries, guarantee that no conductive elements, i.e. metals, will pass through the line, but do not exempt us from the possibility of non-conductive, low-density elements such as plastics, paper, cardboard, stones, glass, rubber, among others, which may appear and which are undetectable with this technology.

On the other hand, traditional artificial vision, for the detection of foreign bodies, has significant limitations due to the enormous variability that may exist in terms of type, shape, colour or size, which results in a high false positive rate (rejected “good” product). However, on a more contemporary level, artificial vision assisted by deep learning or machine learning algorithms is a technology that has its benefits at certain points in the line, such as in packaging, where it is useful for detecting the presence of certain physical contaminants.

Foreign body detection with hyperspectral NIR

If we have to say that by 2022 there is a sufficiently mature, easily integrated inline and economically viable technology for foreign body detection, it is hyperspectral NIR technology.

This technology is an extension of traditional artificial vision in two ways: Firstly, instead of the usual three colour channels in artificial vision, hyperspectral imaging uses up to hundreds of channels, making it possible to see very subtle differences. Secondly, hyperspectral cameras incorporating these systems often have an extended spectral range beyond the visible, i.e. into the infrared, where chemical composition is much more evident than in the visible range.

Hyperspectral imaging can therefore be seen as a paradigm shift in vision systems and as a source of abundant, high-quality data to feed vision systems based on artificial intelligence algorithms. In practice, having a hyperspectral camera is equivalent to having a spectrophotometer in each pixel, i.e. it allows obtaining chemical information on the composition of the product pixel by pixel and product unit by product unit, providing a clear image of the whole inspected area and distinguishing according to its chemical composition what is product and what is not, regardless of its shape, size or typology. It has a limitation; as it works with light and as this has a minimum penetration in the material, everything that is not superficial will not be detected. To prevent this from happening, at IRIS Technology, we integrate vibration or velocity to generate dispersion of the product in the section where the hyperspectral detection system is located.

The Visum HSI™ system can work at a speed of up to 50 m/min detecting foreign bodies up to 3 mm² and with a minimum density of 0.7g/cm³. It is therefore a “compromise” solution between line speed, processing power and minimum detectable size.

Detection of foreign bodies

Visible NIR and chemical composition

IRIS Technology’s turnkey systems, such as the Visum HSI™ analyser, can operate in two spectral ranges, Vis-NIR (400 to 1000 nm) or SWIR (900-1700 nm). The application of one camera or the other in the hyperspectral system will depend on the manufacturer’s need. If it is only a question of detecting foreign bodies, a Vis-NIR camera will be used, since in this range there is enough chemical information to detect what is a product and what is not. On the other hand, if you also want to quantify or classify product composition parameters other than moisture, such as fats, proteins, fibres, acidity or other parameters, a camera working in the SWIR range will be used to obtain reliable and robust results like those of the laboratory.

Some final clarifications

It is important to note that hyperspectral technology is not useful for detecting foreign bodies inside the product, regardless of the product in question, because as mentioned above, the light has minimal penetration.

Although it is not the subject of this article, we believe it is important to clarify that hyperspectral technology is also not useful for the detection of microbiological activity at the concentrations and limits required by regulatory bodies (ppm), where the only viable analytical technique is still the swap or Elisa.

Therefore, at IRIS Technology we are constantly investing in R&D to increase the analytical capabilities of our systems, as well as to develop advanced solutions that are reliable and feasible to integrate into the production line.

By IRIS Technology Solutions

More than 60% of the films used in food packaging are transparent multilayer films

In recent years, multilayer film structures have made it possible to extend their applications in the packaging of food products, allowing the organoleptic and nutritional qualities of the product to be optimally preserved. Today, more than 60% of the films used in food packaging are transparent multilayer films obtained from coextrusion, where the different polymeric layers respond to certain needs: barrier against water, water vapor, temperature, sealability, mechanical resistance, among others.

Film thickness and its uniformity is a critical parameter to control changes in the structure without compromising the performance requirements of the same and therefore the on-line control of thickness is of great importance for designers and manufacturers of multilayer films. Up to now, this control has been done with offline methods that are not compatible with continuous production, such as using a micrometer or optical microscopy. There are also sensors on the market to control the uniformity of single-layer films, but there is no tool that is really effective in industrial and technological terms for controlling the thickness of multilayer films and guaranteeing their uniformity.

The patented Visum Thickness™ sensor technology is a tool for single or multipoint thickness control of thin translucent multilayer films, layer by layer, total thickness and in real time, which makes it suitable for different color coatings on substrates of different nature and therefore has potential uses in multilayer barrier packaging, but also coated textiles, metals, among others.

Some additional features of Visum Thickness™:

  • No calibration required.
  • Number of layers: unlimited.
  • Spot size: 5 mm. 
  • Inspection: single or multi-point.
  • Probe-to-film distance range: 5-30 cm.
  • Dimensions: 300 x 200 x 150 mm3 
  • Weight: 7 kg 
  • Power supply: 240 VAC, 100 W 
  • Operation: slave or continuous.
  • Communication: Wifi / Ethernet / Profinet / Profibus
  • Visum ® software
  • Embedded computer

 

IRIS Technology is a European leader in the development and manufacturing of industrial solutions with applied photonic technologies.

 

For more information, write to info@iris-eng.com

By IRIS Technology Solutions
Industry-4-0 14 July 2022
WhiteCycle: Europe’s big bet to recycle more than 1.8 million tonnes of plastic textile waste annually.
WhiteCycle
Share post

What is WhiteCycle?

On 1st of July, the WhiteCycle project was launched with the aim of developing a circular solution to convert plastic textile waste into high added-value products. This unprecedented European project is coordinated by Michelin and is made up of a consortium of 17 public and private entities, co-funded by the European Commission’s Horizon Europe programme. IRIS Technology is a key member of the consortium as a European leader in the design of advanced optical systems.

WhiteCycle's objectives

By 2030, WhiteCycle is expected to adopt and deploy a circular solution to recycle more than 2 million tonnes of textile plastic waste annually, particularly the third most used plastic PET (Polyethylene Terephthalate). This is expected to reduce CO2 emissions by around 2 million tonnes per year and avoid the landfilling or incineration of more than 1.8 million tonnes of plastic each year.

Currently, complex textile-containing waste (PET) from various sources, such as multi-layer clothing, hoses or tyres, is difficult to recycle. However, soon all these products could be recyclable thanks to the results of the project. Thanks to the WhiteCycle project, PET 2 feedstock could be reused to create high-performance products. This would be possible thanks to a viable circular value chain.

This project will develop processes needed throughout the industrial value chain.

  • Develop and/or use innovative sorting technologies. This would allow an increase of the PET plastic content of complex waste streams in order to be able to process them better.
  • The recovered PET would be pre-treated for its content. This would be followed by an innovative process based on recycling enzymes to break down into pure monomers and pure monomers in a sustainable way.
  • Repolymerisation of the recycled monomers into a new plastic.
  • Manufacturing and verifying the quality of new products produced from recycled plastic materials.

WhiteCycle has an overall budget of ¤9.6 million and receives European funding of approximately ¤7.1 million. The companies participating in the project are located in five countries:

  • Germany: DITF, Estato, IPoint
    Spain: IRIS Technology Solutions, Inditex
    France: Axelera, Carbios, Dynergie, ERASME, IFTH, Michelin, PPRIME, Synergies TLC,UNIV POITIERS
    Norway: HVL, Mandals
    Turkey: Kordsa

IRIS Technology's role in White Cycle

There has long been an urgent need to develop a final circular solution for the industry to transform complex textile plastic waste into higher value-added products (new plastic for hoses, tyres and clothing).

As Europe’s leading designer of advanced optical systems, IRIS Technology will lead the development of a system capable of real-time monitoring and identification of textile PET waste for recycling. For this purpose, IRIS will implement hyperspectral NIR technology using the Visum HSI™ industrial analyser, which employs 2D imaging spectroscopy and extracts pixel-by-pixel and unit-by-unit chemical information from product passing over the line to detect chemical composition, content and spatial distribution. Finally, the HSI system for the detection and sorting of plastic textile waste will be validated on an industrial scale to facilitate its incorporation into recycling lines across Europe.

By IRIS Technology Solutions
Digitalization, Environment, Industry-4-0 22 June 2022
Identification and characterization of polymers with portable NIR technology
polymers
Share post

The plastic recycling industry presents an enormous complexity for the separation of the different types of polymers and among the most widespread techniques for this purpose are the spectroscopic ones. We will not discuss all of them in this article, as it would imply diving into the world of R&D, new in-line detection technologies and their practical or economic limitations in trying to reach the aspirational standards in terms of recycling and circularity of the European Union.

However, following an eminently practical approach, an agile and effective way to identify different compounds or plastic mixtures for recycling or industrial reuse is through NIR spectroscopy. This technique is based on the interaction of light with matter and makes it possible to observe the different absorbances produced by the vibrations of the bonds between the atoms of the polymers. As a result, a characteristic spectrum of each type of plastic is obtained, which can be quantified and classified by means of a predictive machine learning model.

The Visum Palm™ handheld NIR analyzer.

The Visum Palm™ analyzer, a portable NIR instrument operating in the SWIR range (1-1.7 μm), is particularly suitable for successful quantitative (composition) and qualitative (identification and classification) characterization of a wide variety of materials and mixtures. For this reason, the use of the Visum Palm leads to significant savings in analytical workload and substantial reductions in waiting time.

In addition, its ubiquitous nature -due to its portability- and the possibility of programming it to determine multiple parameters at the same time, allows it to be used in a wide variety of analytical tasks at the production line, in logistics warehouses and even for applied research studies and the development of proprietary models carried out by AIMPLAS, a reference in the plastics sector in Spain.

Main features and generic advantages of SWIR spectroscopy:

  • Determination of multiple parameters with a single instrument.
  • Real-time and continuous analysis for automatic and instantaneous correction of process parameters.
  • Non-destructive determinations without sample preparation.
  • Excellent repeatability.
  • Use does not require skilled operators.

Although there are several portable NIR instruments on the market, it is essential to take into account the spectral range with which the instrument works and the size of the spot (measuring point) to ensure representativeness of the reading with respect to the sample. The Visum Palm™ System introduces a 10mm spot and a powerful spectrophotometer that works in the range 900-1700 nm.

Identification and classification of polymers in the industry

The Visum Palm™ instrument includes a library of models for reading and determination at the line, without sample preparation and in a few seconds that allows characterization of a large number of polymers, including PET (polyethylene terephthalate), HDPE (high density polyethylene), LDPE (low density polyethylene), PP (polypropylene), PS (polystyrene), PVC (vinyl or polyvinyl chloride), PC (polycarbonate), ABS (acrylonitrile butadiene styrene), to name a few, including more complex mixtures.

Identification and separation is important in polymer manufacturing, since in order to reprocess plastic waste, manufacturers must ensure that the plastic materials are as pure and clean as possible and, of course, the price manufacturers pay recyclers for the plastic waste they supply depends on this. In addition, low levels of impurities can already considerably affect the quality and yield of a complete recycling batch. In this context, spectroscopy techniques combined with machine learning models make it possible to introduce important automatisms and quality controls sensitive to the needs of the industry.

By IRIS Technology Solutions

The wood industry, and in particular the manufacture of wood panels, has enormous advantages for the introduction of photonic techniques such as near infrared spectroscopy (NIRS) in the different phases of the production process that are currently controlled mechanically, randomly or simply escape from traditional control and manufacturing techniques.

 

IRIS Technology is the most important European supplier of advanced control systems with spectroscopy and artificial intelligence applied to production processes in different industries, including manufacturers of wood or particle boards. These boards consist of shavings of different sizes that form a multilayer structure and that, finally, may or may not be coated with decorative paper impregnated with melamine resin. Undoubtedly, particleboard has many applications in the furniture, furnishing, construction and interior finishing industries.

 

As a specialised supplier in the control of particleboard manufacturing, IRIS Technology has launched several applications in its Visum™ line of analysers using hyperspectral technology, which we will tell you about below:

 

Chipping process

Wood chips make up the raw material in the manufacture of particleboard and can be of different kinds or origins. At the production line, IRIS Technology’s hyperspectral imaging system Visum HSI is able to determine in real time the proportion (quantification) of each class or type of chips, as well as to determine the average moisture content of the chips passing through the conveyor belt and to detect surface foreign bodies that are not controlled by X-rays such as rubber, plastics, or others of lower density.

 

As the raw material is mainly cut into chips in a wet state and according to the origin and type of wood there is variability in terms of moisture content, having accurate and objective information in real time is a useful tool to adjust the subsequent processes of defibration and drying.

 

Gluing – Urea formaldehyde content Quantification or Classification

print_urea

Numerous adhesives, binders or resins such as urea formaldehyde, among the most widespread for their enormous advantages in particleboard production, are applied in the gluing process. The mixture of the wood chips together with the adhesives determines the consistency and quality of the board resulting from pressing.

The Visum HSI analyzer allows real-time monitoring, classification, quantification and determination of the spatial distribution of this adhesive compound without the need for destructive or laboratory techniques and thus detects anomalies to optimize the gluing process or formulation. 

 

Pressing and curing of boards

The pressing process is not a uniform process since to a large extent, the curing will depend on the variability that exists in the subsequent stages of the manufacturing process. Here at IRIS Technology, we find that the wood industry uses different scales to determine the quality of the curing of the boards and that it currently extends to a few samples produced per batch and destructive.

 

Also through IRIS hyperspectral systems, it is possible to observe and classify the curing factor of complete boards, unit by unit, obtaining chemical and spectral information of each pixel observed by the system, becoming a crucial instrument in the final quality control of the particle board.

curado

Impregnation – Moisture Control In-Line

Finally, impregnation is the process by which the paper layer that acts as a decorative coating for the particleboard is impregnated. Moisture is the main quality factor here, as it will ultimately affect the quality and durability of the impregnation. The hyperspectral systems imaging Visum HSI at this point is able to determine the homogeneity and quantify the moisture so as to be able to detect and correct deviations or anomalies that will result in losses, claims and returns.

print_humedad

For further information about us and our hyperspectral systems, and applications please contact us at info@iris-eng.com.

By IRIS Technology Solutions
Industry-4-0, Pharma-4-0 31 March 2022
NIR technology and Raman spectroscopy: introduction and applications in the pharmaceutical industry
NIR technology and raman spectroscopy
Share post

In the following article we will address the main applications with NIR technology and Raman spectroscopy, in real time, for the control of manufacturing and quality processes both for pilot plant – in tune with the Quality by Design (QbD) concept – and for industrial scale-up. In addition, this article is intended to be a starting point for industry professionals to raise questions about how to optimize control with process analytical technologies (PAT) for efficient management and implementation of a continuous manufacturing model.

 

Raman and NIR Spectroscopy

 

Both technologies have in common that they are photonic techniques – they take advantage of the properties of photons or light and their interaction with matter – diagnostic and non-destructive, allowing chemical and structural information to be obtained in seconds from almost any organic or inorganic material or compound. Hence, their use in laboratories is widespread in different industries and they are analytical techniques known by quality control professionals.

 

For those who are not laboratory professionals or are just entering the field, it is essential to start with a few brief concepts and examples to understand its applications.

 

Raman spectroscopy is a technique based on the inelastic scattering of light. Inelastic or Raman scattering occurs when the energy changes during the collision between the monochromatic light and the molecule and, therefore, the frequency of the scattered light also changes. These changes provide information about the molecular identity and structure of the samples or material being analyzed.

 

Near infrared spectroscopy (NIR) is a technique based on the interaction between electromagnetic radiation and matter, within the wavelength range of 780-2500 nm. These absorbed radiations can be related to different properties of the sample, providing qualitative and quantitative information. The near-infrared range is characterized by weak overtones and combined bands arising from the strong fundamental vibrations of O-H, C-H, C-O, C=O, C=O, N-H bonds and metal-OH groups in the mid-infrared range.

 

However, both Raman and NIR spectroscopy devices in real time are optical (vision) devices that work with artificial intelligence. The information they collect from the spectrum of the analyzed object is interpreted by a mathematical model – chemometrics – called a “predictive model” that tells the system what it is looking at. A very simple example: if we want to control the Paracetamol content of a 1mg. form, the mathematical model that analyzes the process must know how to correlate the spectrum corresponding to that value and for that it must know what is 0.8 – 0.9 – 1.1 and so on in the range of interest to be controlled. The predictive model is a mathematical model that essentially correlates a spectrum with a reference value. This reference value comes out of the traditional laboratory analysis.

 

Let’s get down to the important: What use are these systems in my factory?

 

Applications of real-time NIR technology:

 

1) Raw material identification: Identification of raw materials is a routine task in the pharmaceutical industry. These tests are carried out before the materials are processed, in order to avoid errors as much as possible and thus save time and money. This material testing applies not only to purchased materials (e.g. excipients), but also to some internal material transfers, e.g. APIs manufactured in another plant. The latter is very important to take into account when wondering why we have problems in mixing some formulations with certain raw materials.

2) Homogenization: Once identified and weighed, raw materials usually require homogenization of the different components. This is a critical step in the manufacture of solid-state pharmaceutical products, as it has a direct impact on the quality and homogeneity of the final product. The homogenization process is mainly affected by physical properties such as particle size, shape and density. Mixing endpoint and homogenization are not the same, not in terms of regulation according to the European Medicines Agency (EMA). From IRIS Technology we try to raise awareness on this point, which is sometimes confused, to provide in-line control solutions that are homologous to the control protocols established by the EU and Spanish regulations.

3) Granulation and sizing: Sometimes the different ingredients of the formulation do not mix well and segregate during homogenization. Therefore, it is desirable to granulate powdered ingredients by compression, dry granulation or in the presence of a binder under wet conditions. Most spectroscopic uses focus on the determination of water during wet granulation or drying after granulation.

4) Extrusion: NIR spectroscopy has been widely used in hot extrusion to monitor both API content and solid state of extrudates and to identify interactions between ingredients.

5) Tableting: This stage of the process is the closest to the final product. Therefore, it is sometimes easier to control the quality of the product directly in the press, especially if there is a subsequent coating step. At this point, NIR can also play an important role.

6) Coating: The coating process is a crucial step in the manufacture of solid oral preparations. In fact, the coating can act as a physical screen to avoid the effects of oxidation, moisture and lighting conditions in order to improve the stability of the final product or intermediate products in the process. The coating can also play an active role in the protection (gastroresistance) and release (modified release) of the drug in vivo. The homogeneity and thickness of the coating are important in controlling the timing of drug release. Many offline techniques are available to control the coating thickness, such as changes in weight, height or diameter of the coated granule/tablet cores during processing. In-line NIR technology is especially useful for monitoring water-based coatings and is a technique that saves hours of analysis, which we have discussed in particular in this other article.

7) Final product control: An important part of final product quality control includes the analysis of all batches produced to avoid out-of-specification results. This control point, although it is too late to avoid losses, can also be performed with portable (handheld) NIR tools and in just seconds analyze dozens of units (homogeneity, concentrations or other parameters) at the line.

 

Real-time Raman spectroscopy applications

 

As we will see below, this analysis technique has some applications similar to NIR spectroscopy and others very different because it is a technique with a much higher precision than NIR and that IRIS Technology uses in the systems we manufacture when we work with APIs with very low concentrations (typically <0.5) or in aqueous matrices where the amount of water generates a lot of noise in the analysis with NIR equipment.)

 

1) Raman spectroscopy for API identification: As each API has its own Raman characteristics, Raman spectroscopy can quickly and accurately identify the active ingredients, has a very low prediction error and in some cases has a detection limit as low as ppm.

2) Raman spectroscopy for the quantitative and qualitative analysis of formulations: The composition of pharmaceutical preparations is relatively complex; however, Raman spectroscopy remains one of the rapid detection methods if the excipients are simple or just an aqueous solution.

3) Raman spectroscopy for detection of illicit substances: Raman spectroscopy can be used for trace detection due to its sensitivity, speed and accuracy. In general, small amounts of illicit drugs cause drug safety incidents, and Raman spectroscopy can be used for illicit drug detection.

 

Benefits of applying NIR and Raman technology in production lines

 

In general, there are two fundamental advantages of Raman spectroscopy and NIR technology on production lines over traditional laboratory methods:

 

The first advantage would be the monitoring of continuous manufacturing. The pharmaceutical industry works mainly in such a way that the final drug is the result of several independent production steps. These can also take place in different geographical areas, which entails shipping and storing the different intermediate products in containers until the next manufacturing facility. This increases the risk of degradation over time or due to environmental conditions (light, humidity, etc.). One way to address this problem is to move from independent batch work to continuous manufacturing with the help of monitoring technologies such as real-time analytical control equipment.

A continuous process or continuous manufacturing is one in which materials are continuously loaded into the system, while the final product is continuously unloaded. Unlike stand-alone batch manufacturing, this concept involves the total connection of production units, with the use of PAT systems, along with process control systems to monitor and control the integrated manufacturing plant. Continuous process units are usually more efficient, more productive, with reduced volumes and less waste compared to classical process units. Therefore, these types of production units can respond more quickly to drug shortages or sudden changes in demand or needs (such as in a pandemic). In addition, their small size allows them to be transported directly to where the drugs are needed. However, a thorough understanding of the process, including the different connections between its processing units, is necessary.

The second major advantage is to reduce sampling and analysis time, and this is very important in biotech processes in their research, development and production phases. So far, most of the data are obtained with off-line instruments and methods.

 

Specifically for Raman, Raman spectroscopy is a powerful instrumental technique used in various types of pharmaceutical analysis. The superiority of the technique depends on the molecule of interest, the concentration level, the matrix or solution, other interfering species present and the desired sampling method. For many applications, Raman spectroscopy may be the best answer for identification and spectroscopic control needs. The role of Raman spectroscopy as a quantitative analytical tool is increasing due to the simplicity of sampling, ease of use and applicability to aqueous systems.

 

As manufacturers of systems that operate with Raman and NIR spectroscopy, IRIS Technology collaborates with numerous pharmaceutical companies in the development of analytical solutions and the implementation of control systems, in turnkey projects ranging from technology, adaptations that may be necessary, data modeling, installation, validation and even homologation.

 

We hope this article has been of interest to you and as always, if you have any questions or even suggestions, you can write to us at news@iris-eng.com.

By IRIS Technology Solutions
Digitalization, Industry-4-0 4 March 2022
Mitigate variations and optimise critical product parameters?
hiperespectral NIR spectroscopy
Share post

In this article we will address two recurring issues in food production: mitigating variations in the physical-chemical composition of the product by controlling critical nutritional values and how these parameters can be optimised with online tools. Finally, we will address a case of application of hyperspectral NIR technology within the industrial bakery sector and the control of a critical input in this industry, fat.

nir spectroscopy

The hyperspectral technology discussed in this article is an extension of traditional artificial vision in two ways: Firstly, instead of the usual three colour channels in artificial vision, hyperspectral imaging uses up to hundreds of channels, making it possible to see very subtle differences. Secondly, hyperspectral cameras often have an extended spectral range beyond the visible, i.e. into the infrared, where the chemical composition is much more evident than in the visible range. Therefore, hyperspectral imaging can be seen as a paradigm shift in vision systems and as a source of abundant, high-quality data to feed vision systems based on artificial intelligence algorithms. In practice, having a hyperspectral camera is equivalent to having a spectrophotometer in every pixel.

Until now, however, the use of this technology has been limited to very specific environments: military applications and research laboratories. IRIS is a pioneer in extending the use of this technology beyond such environments, in order to exploit its enormous potential in industrial environments. In this sense, it is not enough to have a suitable camera, but each specific application requires integration work and the development of the appropriate machine learning solution. IRIS specialises in both areas.

While the technology has numerous applications in different industries and processes, we will talk about the industrial bakery sector, where it is essential to control the fat content, not only because consumption trends demand it, but also because large variations in the fat value result in cost overruns, explained by the suboptimal use of the raw material – oil – as well as unexpected changes in the palatability of the product when the input is well above or below the optimal value.

What happens is that, with current laboratory techniques to control the fat value, such as the Soxhlet method, which involves several hours, it is never possible to notice these variations and rectify the process in real time, as it is an off-line method, which requires specific sampling, preparation, inputs and personnel and especially time for its results, This makes it incompatible with the idea of standardising the product, the use of raw materials and particularly with any attempt to optimise the critical quality parameters in the production process, which can only be done by having continuous measurement – and information – and a minimum margin of error.

The latter is interesting to clarify and happens with different parameters in different foods that are manufactured, such as moisture, fat, sugars, seasonings or others, where there is an “optimal” value in the quality vs. production costs equation, but difficult to achieve due to the lack of real time measurement and information of the chemical composition of the product. For example, if as a manufacturer, I know the moisture value of my production in real time and the error of that measurement is very low, there is margin and possibility to adjust the formulation of the product to that ideal value; otherwise, with an off-line method, it would be a high risk decision and difficult to control.

An application case:

A major customer in the industrial bakery sector needed to mitigate variations in fat content and optimise its use in the process. Changes in the product were observed that could hardly be explained by formulation changes. Therefore, a study was started to see which processes were producing these changes. The study is slow and complicated because he lacks a tool that allows him to quickly measure the fat content in order to be able to relate it to changes in his processes.

 

The installed industrial Visum HSI system operates in the infrared range. It allows inspection in terms of fat content on a unit-by-unit product basis. IRIS Technology Solutions’ integrated software and chemometrics tools enable the user to self-calibrate the device to changes in product composition and it is seamlessly interfaced with plant information systems.

As a result, the client was able to determine the point in the process where fat variations were generated by measuring and adjusting in real time the recipe and save 1.5% of oil in the process.

Like all IRIS Technology equipment, it is multi-parametric, so it can simultaneously provide, based on the same reading, information on multiple parameters, not only quantitative (e.g. moisture or sugar content or unit size), but also qualitative (e.g. degree of cooking or morphological variations).

 

If you want to know more about NIR spectroscopy hiperespectral and its applications to other processes, products and industries, please contact us at info@iris-eng.com.

By IRIS Technology Solutions
Industry-4-0, Innovation 24 January 2022
IRIS Technology develops the first industrial system for the chemical control and inspection of melamine boards
Image HyperSpectra
Share post

IRIS Technology, a Spanish engineering company that manufactures photonic solutions for online quality control, has developed the first industrial system for real-time quality control of melamine or particle boards with NIR and hyperspectral technology.

 

The wood industry, and consequently the furniture and furnishing industry, is a sector that continues to grow by leaps and bounds worldwide, with a year-on-year increase of 6.5%, still boosted by the increase in consumption during the pandemic. So, not surprisingly, technology is accompanying the industry in this growth by combining production and operations techniques with smart technologies such as photonics, analytics and artificial intelligence brought about by Industry 4.0.

 

The new chemical vision industrial system, manufactured and patented by IRIS Technology, uses NIRS (Near Infrared Spectroscopy) technology and machine learning together with chemometric models to analyse the composition of each melamine board unit produced, non-invasively, It can quantitatively analyse the distribution of the moisture parameter on the impregnation line and classify the curing level of each board in order to detect defects early, correct factory processes and reject or remanufacture boards.

 

Until now, the control of this type of parameters in the melamine production process was only carried out through destructive laboratory methods and visual inspection, implying a high cost for the manufacturer and the difficult -if not impossible- inspection of all the units produced. This new technological application stands as a solution for the inspection of this type of boards, thus reducing defective units, losses, claims and consequently improving the brand image of the manufacturer.

 

For more information please contact IRIS Technology www.iris-eng.com

By IRIS Technology Solutions
Digitalization, Industry-4-0 20 January 2022
Real-time Brix control with NIR technology: a competitive factor for production and commercialisation.
grados brix
Share post

In the fruit and vegetable industry, as well as for fruit products (juices, purees, concentrates, among others), a critical value either to determine quality standards, commercialisation, ripeness or to adjust the recipe of certain food preparations, are the Brix degrees. In this article we will talk about this, how this control is currently carried out in certain industries and how Brix degrees can be controlled in real time with NIR technology and its benefits.

 

The Brix degree (ºBx) is a parameter strongly correlated with the content of soluble solids and, in particular, sugars, therefore, and because it is relatively easy to measure, it is often used as a process and quality control criterion. In many cases, the acceptance criterion for semi-products and products is simply based on a certain threshold value expressed in Brix.  In the case of fruits, the quotient of Brix to total acidity is the usual, and even legal, criterion for determining the degree of ripeness.

 

Currently, in the vast majority of the industry, this ºBx control is carried out by traditional laboratory methods, where “representative” samples are taken from a batch and subjected to a conventional destructive technique such as refractometry or HPLC analysis. This traditional method, in addition to having a cost (of specialised personnel, time and equipment), is not sufficient to cope with the high variability in the quality attributes present in fruit and vegetable batches, nor with the need of the fruit and vegetable processing industry to monitor this parameter in real time and be able to adjust the other components of the “recipe” of its product, according to the parameter of interest. In other words, monitoring this parameter online for the processing industry means optimising all process inputs and standardising the quality of the final product. For fruit and vegetable growers, analysing ºBx with a portable Visum Palm NIR analyser, for example, is useful to save laboratory time, determine their marketability and even improve the terms of trade with their customers and guarantee more quality to the domestic and export market. At the same time, a NIR analyser, in any of its versions, is capable of performing, depending on its concentration, added measurements such as total acidity, pH and the concentration of other analytes of nutritional or organoleptic interest.

 

An application case

A major producer of fruit-based food preparations, occasionally enriched with dairy products, in order to be able to standardise its products to meet the requirements of its customers – supermarket chains – requested an in-line solution, flexible enough to be compatible with its wide range of products.

 

This solution, based on a Visum In-Line NIR analyser for liquids, included not only the Visum In-Line hardware and its adaptation to the characteristics of its line, but also at software level the development of a library of predictive models capable of continuously determining the Brix and pH of different “families” of products with respective maximum inaccuracies of 0. 5 for ºBx and 0.1 pH, which constituted a global and adequate solution for making technological decisions in real time to guarantee the standardisation of the product and its quality within the limits required by the client.

By IRIS Technology Solutions
Digitalization, Industry-4-0, Pharma-4-0 10 January 2022
Monitoring the pharmaceutical pellet coating process?
monitoring of the pellet coating process
Share post

In the pharmaceutical industry, there are many microgranulated formulations that are coated to achieve a sustained release or a controlled release of the drug or active ingredient over time, a clear and well-known example is Omeprazole. In this article we will talk about these formulations and how to avoid, during the coating process, release and potency analysis using NIR technology. At the end we will explain a concrete case of application.

During the pelletization process of modified release dosage forms, the correct application of the coating (e.g. enteric release coating) will determine the subsequent efficacy of the drug and the mg/API release time of the drug. Because of this, controls are performed throughout this process to ensure the quality and thus the expected pharmacological action.

Currently, this control is performed during coating with samples taken from the coating equipment at different times and analyzed in the laboratory using HPLC or liquid chromatography techniques. This method requires sample preparation prior to analysis, specialized personnel and consumables (materials) for analysis. The main problem with the traditional method of control is that it takes a long time to obtain the results and therefore does not allow rectifying the coating process in case of failures or, if the process has to be stopped, the quality of the semi-product may be altered.

An alternative and very effective tool that allows real-time monitoring of the coating process is the NIR technology, since the spectral signature of each pellet can be related to its coating conditions, dosage and release times without the need to resort to traditional methods.

Application case

An industrial application case with a major pharmaceutical laboratory manufacturer of microgranulated formulations showed that there is a clear correlation between NIR spectra, release times and potency (mg API/g pellet) that is released. In this case, an at-line control with a Visum Palm portable NIR analyzer is currently used.

For the elaboration of the predictive chemometric models it was necessary to take samples throughout the coating process from different batches directly from the coating equipment where both wet and dry samples were measured with the portable NIR analyzer.

Subsequently, release and potency tests were performed on the same samples and preliminary predictive models were developed by correlating the NIR spectra with the values obtained by the traditional tests, resulting in a correlation coefficient (R²) of 0.99. These predictive models showed that, on the one hand, it is not necessary to dry the samples for the prediction – so the control can be performed directly on the wet sample – and on the other hand, that there is a clear relationship between the NIR spectra and the release times of 1h, 4h and 7h. Finally, the wet sample model was further robust and tested with more samples and remotely installed on the customer’s Visum Palm portable NIR analyzer, which as a result of the project was able to perform the coating and release potential control at-line in just seconds and without dependence on laboratory HPLC analysis.

We hope you have found this information on the applicability of NIR spectroscopy for monitoring pellet coating quality useful and invite you to send us any questions you may have on this or other applications to our email news@iris-eng.


Joel Valdés Bravo
Technical Disclosure
IRIS Technology | Visum

 

By IRIS Technology Solutions